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Bariloche. Argentina 
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Abstract. The quantum mechanical problem of tunnelling and reflection of holes f" 
barriers and wells in semiconductor heterojundons has been analysed. By using the Lultinger 
Hamiltonian to describe the dynamics of holes. the inherent anisotropy, non-parabollcity and 
heavy- and light-hole mixing at the top of the valence band has been taken into acmunt. 
The symmetries of the hole scattering matrix are worked out, from which very general 
relations among the reflectivities and transmissivities are obtained. These analytical results 
are complemented by numerical calculations for several different situations: within the range of 
parameters investigated. no resonant unity " i s s i o n  above the barrier is found. We do find 
thar the transmission is zero (anti-resonances) in the well configuration for particular values of 
the energy of the incoming heavy hole. 

1. Introduction 

Tunnelling and reflection from one-dimensional square barriers and wells are traditional 
problems of quantum mechanics; however, for several decades they were considered 
instructive but essentially academic idealizations~of real physical systems. With the arrival of 
the manufactured semiconductor heterostructures. these problems became also of practical 
interest, as the epitaxial growth heterointerface between two different semiconductors is 
almost an ideal realization of a step potential. Among the many unexpected results that 
these systems produce in the field of basic physics one might mention the integer [I] and 
fractional [Z] quantum Hall effect, the unambiguous observation of Wannier-Stark ladders 
in superlattices [3], and the quantization of the electrical conductance in quantum-point 
contacts [4,5]. On the other hand, the interest comes also as a consequence of their potential 
applications in electronic (for instance, resonant tunnelling diodes) and optoelectronic (for 
instance, quantum-well lasers) devices. 

Many theoretical methods have been applied to study their band structure, electronic 
and optical properties [6]. These methods can be divided into two general classes: the 
super-cell approach in which the heterostructure is viewed as a material with a large unit 
cell [7], and the boundary-condition approach in which bulk wave functions for each of the 
constituent semiconductors are matched at the heterostructure interfaces [S, 91. Within the 
latter category, the envelope-function approach, based on the effectiveLmass approximation 
[IO], is easy to apply; besides, it is particularly suited to including external perturbations, 
such as electric and magnetic fields, and uniaxial stress. 

While experiments concerned with the electronic and optical properties of electrons 
in II-V compound semiconductors at the bottom of the conduction band can be usually 
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described assuming a parabolic and isotropic dispersion relation, the situation for holes is 
more involved. As a consequence of the degeneracy at the top of the valence band, one 
is forced to use a multiband effective-mass theory, that in the case of GaAs-AI,Gal,As 
implies the use of the 4 x 4 Luttinger Hamiltonian [ll]. at least for energies smaller than 
the bottom of the r7 spin-split-off doublet (-340 mev). 

The aim of the present contribution is to generalize the well-known textbook results for 
the transmission and reflection of electrons by one-dimensional potentials to the case of holes 
described by the 4 x 4  Luttinger Hamiltonian. A first step in this direction has been made by 
Chuang [12], who considered the refraction holes at a single heterointerface (the equivalent 
of a step potential for electrons). In this work, we have extended these results to the case of 
refraction by potential barriers (including the case of a single heterointerface as a limiting 
case) and wells. Besides, this we include an analysis of the symmetries of the transmission 
and reflection coefficients, by making an extension of the one-channel scattering matrix 
formalism to a multi-channel case. The understanding of the dynamics of holes against 
simple obstacles such as barriers and wells is quite important, as they can be considered as 
the building blocks of more complicated devices, such as double-barrier resonant tunnelling 
systems and superlattices. Another situations where two or more pairs of states coexist at a 
given energy in a scattering process '%e: r-X mixing of electrons tunnelling through AlAs 
barriers [13, 141; transmission across quasi-one dimensional systems [ 151; and interband 
tunnelling [16, 171. 

The scheme of calculation is similar to the one adopted by Andreani, Pasquarello and 
Bassani [ 181, Wessel and Altarelli [19], and Chao and Chuang [ZO] in their complementary 
study of the bounded-hole solutions of GaAs-Gal,AI,As quantum wells. We first solve the 
effective-mass equation in the well and barrier materials, and then match the bulk solutions 
at the heterointerfaces in order to find the eigenstates. The calculation scheme differs, 
however, in an important point: while the bulk solutions of [18] are linear combinations of 
four-component vectors, our use of a canonical transformation of the Luttinger Hamiltonian 
decouples it into two 2 x 2 blocks [21], and greatly simplifies the numerical calculation. A 
similar approach was used in [12]. 

From a  more^ general perspective, the problem addressed in this paper can be considered 
as the simplest extension of the scattering matrix formalism, that usually considers only one 
type of propagating state in each region of space, to the case of two types of propagating 
states in each region of space (heavy and light holes). The connection with the scattering 
formalism proves to be quite useful. as it allows us to obtain quite general symmetry 
properties of the transmission and reflection coefficients. 

The remaining part of the paper is organized as follows. We give in section 2 the 
canonical transformation which reduces the original 4 x 4 Luttinger Hamiltonian to two 
decoupled 2 x 2 blocks; we discuss the bulk solutions of each  block, the definition of 
the probability current density, and also the corresponding boundw conditions that should 
be applied to match bulk solutions across each interface. In section 3 we discuss the 
general symmetries of the transmission and reflection coefficients, by making an extension 
of the scattering matrix formalism and using the time-reversal and spatial symmetries of 
the Hamiltonian. Section 4 is devoted to the numerical results, and there we present the 
transport coefficients both for the b.mier and well cases. Finally, we give our conclusions 
in section 5. 

A D Sdnchez and C R Proetro 
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2. Canonical transformation, hole wave functions, dispersion relations, probability 
currents and boundary conditions 

We consider a potential barrier (well) of Al,Ga+,As (GaAs) embedded in an otherwise 
homogeneous GaAs (AI,Gal-,As) host matrix, grown in a (100) direction, which we take 
along the quantization axis z. Due to translational symmetry in the ( x ,  y )  plane of our 
system, the envelope wave functions can be written as a plane wave along this plane times 
a wave function along z, the latter given by the solution of the following 4 x 4 block 
diagonalized effective-mass matrix Hamiltonian [21]: 

where V ( z )  = f Ai3 B(z)B(L - z)  is the banier (+) or well (-) potential ( A E  being the 
valence band offset), iz is the operator -ia/az, 

h’ 

2m P * e = - [(Yl  z!= YZ)(k,2 + k;) + (VI F 2 Y d i 4  (2) 

(2b) 

(7.c) 

(26) 

A2 

A 2  

R = A- [y&- $1 - ~iy?k,k,.] 
2m 

s = f i - y 3 ( k x  - ik,) 

ti = IRI - iizlSl 
m 

and the hole energy has been counted as positive: In equation (2) m is the free-electron 
mass; and yl , y2. y3 are the Luttinger parameters corresponding to the banier or well and 
semi-infinite layer material. In writing the kinetic energy we have neglected very small 
linear k-terms caused by the lack of inversion symmetry of the zincblende sh’ucture [lo]. 

The Hamiltonian (1) acts on a four-component envelope function 

f(z)~= [ f i ( Z ) ,  f Z ( 2 ) .  f3(Z), fdz) ]  
while the total electronic wave function is approximately given by 

q,(r) = ei(k,x+k,d) [.fi(z)Il) + .fz(z)12) + f d z ) b )  + fdZ)l4)] 
2 Fi(r)ll) + Fz(r)12) +4(T)13) + Fdr)14), (3) 

The states II), 12). 13), and 14) which yield the block-diagonalized form of the Luttinger 
Hamiltonian are linear combinations of the usual rs Bloch functions I J ,  J,) of both materials 
at IC = 0, as follows: 

3 3  3 3  
11) = “ 1 2 ’ + 2 ) - “ * 1 2 ’ - 2 )  

3 1  3 1  
12) = PI-, 2 -7) - P*/- 2’ +-} 2 (4) 

3 1  3 1  
13) = B 1 - , - -) + B” I -. +-) 

2 2  2 2  
3 3  3 3  

14) = ru(2,+-)+a*I~,-;)  2 
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where CY and ,9 are chosen so that the Luttinger Hamiltonian in the new basis has the 
block-diagonalized form (1). 

Following standard procedures we may represent schematically the total-angular- 
momentum states [J, J:) using the space Bloch functions X ,  Y, Z and the spin functions 

A D Siinchez and C R Proetto 

It) and 1.1) 

where X ,  Y and Z being functions which transform in the same way as the atomic x- ,  y-, z- 
functions under the symmetry operations which map the local tetrahedron onto itself. 

To proceed, we discuss first the eigenvalues and eigenfunctions of equation (1) for the 
hulk situation V ( z )  = 0, as these solutions will be the basis for the problem with a potential 
banier or well along z. 

(a) Bulk solutions As result of the translational symmetry along z, the envelope function 
along this direction is also a plane wave with wave vector k,, and consequently the operator 
iz in equation (2) becomes just a number (kz ) .  

From the diagonalization of each 2 x 2 block of equation (1) we obtain the well-known 
bulk dispersion relation for the valence band in 111-V compound semiconductors [221: 

E(k)  = Ak2 & [B2k4 + C2(k:k: + k?k: + k,’k:)]’’’ (6) 

where A = @i2/2m)yl, B = (k2/m)y2. Cz = (3k4/m2)(y: - y,’), k2 = k: + k: + k: and 
the + (-) sign refers to light (heavy) holes; each eigenvalue is twice degenerate, as a result 
of time-reversal and inversion symmetry. As will become clear below, the magnitude of 
interest to us is kz as a function of E (for a given k, and k,); from equation (6 )  we easily 
obtain 

1 
k?(k,, E )  = (A2 - B2) [ A E  - (AZ - B2 - 

B2E2 + AC2Ek: - C2 - B2 - - k: 
4 (7) 

where the - (+) sign corresponds to light (heavy) holes and we set k,  = 0 for simplicity. A 
graphical representation of this equation using Luttinger parameters corresponding to GaAs 
is given in figure 1 for heavy holes (HH) and figure 2 for light holes (LH), for a typical value 
of kz = 6 x 10L2(2n/a); corresponding numerical values are given in table 1. As these 
dispersion relations will be the basis for our interpretation of the reflection and transmission 
coefficients, they deserve a few comments, which we will now list. 

(i) There are two critical energies E; (z 0) and E, (< 0). If E < E,,, both solutions 
of kz are pure imaginary, with the absolute value of the LH solution being smaller than 
that of the HH solution: Ik(L)l e I!dH)[; Z~ in the limit E -+ -W. k!‘) --f f iJ-E/(A + B ) ,  
while kjh) + &/e. For energies in the range E,  < E < E;. both solutions 



0.02 - 

0.00 - 

of k, are complex, with real and imaginary non-vanishing components. A simple analysis 
of equation (7) shows that in this case the real and imaginary parts of kiL) and kiH) should 
fulfil the conditions Re kf‘) = Re k,n‘ and Im k?) = zk Im k;”; as can be seen in figures 
1 and 2, we have chosen to have equal (unequal) signs for the imaginary ,(real) component. 
Mathematically, these latter solutions arise when the argument inside the square root in 
equation (7) i s  negative, and from the condition that the argument be zero we obtain 

- Re kjH) 
\ 
\ 

, --- lmkzm 
\ 

I c ______________-_____--------- - --------- 

where 

Both types of solutions (pure imaginary and complex), while unphysical in a bulk 
situation, should be considered in the present problem, as they are physically acceptable 
solutions for finite regions such as bairiers and wells. 

(ii) For E > E;, the HH solution is real: the same is true for the LH when E > El. 
Imposing the condition kz = 0 on equation (7) we obtain two solutions: 



0.04- 

0.02- 

- - . U 

k 
3 0.00- 

- 0.02 

and 

\ 
\ 

\, 
\ 
\ ,/----_ , , . . . --. . 1 
! 
I f  
\ I  
\ I  

I t  
I f  

\ 
\ 
\ 

I 1  \ 

/'-IT 
- Er E: 

- 
- Re kp" 

-_- Im kp" 
- 

h2k: 
Eh+ = (YI - 2y2)-. 2m , 

The significance of these two energies is that k:') becomes pure imaginary when 
E l  e E e El, while it is real in the window E; e E < Eh+. Some words are in 
order concerning this classification of solutions as heavy or light. While the distinction is 
clear for energies E > El, as E - A(k: + k:) (see equation (6)) is positive for kjL) and 
negative for k!H), it becomes more complicated at lower energies. By following the sign of 
the function E - A(k:+k;'") for decreasing values of E ( E  e E,), it is seen that the pure 
imaginary solution kp' evolves progressively towards a pure imaginary HH solution, and 
when E h  e E < Eh+ in a propagating HH solution. That is, the solution that by convenience 
we call light in figure 2 is actually of heavy type below some threshold energy between Eh+ 
and El. 

The eigenvectors associated with the eigenvalues (6) are 
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where FIH = (P-Q-E)/NH, F ~ H  = -kT/NH, FIL = k / N L ,  F ~ L  = (E-P-Q)/NL, and 
N H  = (~P-Q-E\'+\&')'/',  NL = (~~-~-~12+1~12)'/2areno,alizationconstanls. 
While the eigenvector notation-as a four-component vector is redundant, its usefulness will 
be clear in the next section, where the symmetry properties of the Hamiltonian will be 
analysed. 

Both for checking the consistency of the boundary conditions across each interface 
and for the calculation of the reflection and transmission coefficients we need an explicit 
expression for the probability current in a multiband situation within the effective-mass 
approximation. As this has been already discussed elsewhere [23], we just quote the result 
for the probability current density along z: 

jZ." =Re; {[91(lF1,1~+ lF~.l~) - ~YZ(IFI , I~  - I F d 2 ) ] k f 1  +~~J?Y~FI,F&) 
h 

(12) 

with n = H. L. 
Moreover, as for the calculation of the scattering coefficients we will evaluate the 

probability current density at the asymptotic semi-infinite-regions z + &&; only real 
values of k!" and k!L1 are allowed in equation (12), corresponding to propagating states. 
Under this condition, the expression simplifies considerably [12]: 

For the simplest case k, = 0. kiH' = kiL) = kz, and equation (13) reduces to 

which is the usual result for particles with parabolic and isotropic dispersion relations. Note 
that when k, = kr = 0, all the off-diagonal terms in the block-diagonalized Luttinger 
HamiltoGan vanish, and what remains are the diagonal terms with electron-like kinetic 
energy "d effective-masses m/(yl - 2yz) (heavy hole) and m/(yl + 2y2) (light hole). 

Real positive (negative) values of k p )  correspond to right- (left-) propagating holes; 
following the notation of [12] we will denote the current associated with the right- (left-) 
propagating states as j z .n  ( j - z .n) ;  from equation (13) it can be seen that jz.n = -j-z:n. 

(b) Heterojuncfion solutions. As the presence of interfaces along z breaks the 
translational symmetry in this direction, plane waves with k, become mixed with -kz, while 
k, and k,  remain good quantum numbers. Accordingly, the more general upper-block wave 
function corresponding to the semi-infinite layer to the left of the barrier or well is given 
by a linear combination of heavy- and light-hole states moving in bo* directions along z: 



2066 A D Srinchez and C R Proetto 

where a and c are amplitude probabilities for left-incident heavy and light holes, while b 
and d are the corresponding reflection amplitudes; kiH) and kiL) are the HH and LH solutions 
of equation (7) for a given kx and energy E ,  F;H = F z ~ ( - k ; ~ ) )  and F;L = Fl~(-k!'-)). 

The associated solution in the barrier or well intermediate region is 

with F and denoting magnitudes evaluated at the barrier or well region. 
Finally, the solution at the right semi-infinite layer is given by 

with e and g being transmission amplitudes, and f, h right-incident amplitudes. A trivial 
generalization (using (Ilb)) gives a similar set of solutions corresponding to the lower block 
of equation (1). 

Once interfaces between two,semiconductor materials along z are allowed, the question 
about the boundary conditions naturally arises; besides the continuity of the envelope 
function at each heterointerface, a second set of boundary conditions is obtained by 
integrating equation (I)  between zo - E and 20 + E with zo the interface coordinate, and 
taking the limit 6 + 0 ( E  0) [lo]. The explicit expression for the resulting boundary 
matrix can be found elsewhere [23]: it is quite reassuring that this procedure is consistent 
with the requirement that the probability current density given by equation (12) be constant 
along z .  Application of these boundary conditions to both interfaces at z = 0 and z = L 
yields a homogeneous system of eight linear equations (four at each interface) for the twelve 
unknowns a, b, c, d ,  a, ,9, y ,  6, e, f, g and h. In order to have a mathematically well-defined 
problem we should take, for example, a = 1 and c = f = h = 0 in equation (14), which 
amounts to limiting ourselves to the case of an incident HH coming from z = -W. As a 
result of this simplification we obtain an inhomogeneous system of eight linear equations 
whose solution can be found numerically; the corresponding results will be given in the 
next section. 

Assuming that we have found these eight amplitude probabilities, the next step is the 
calculation of the reflection and transmission probabilities. Let us define the reflectivity for 
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the heavy hole RHH and for the light hole RLH as 

and 

respectively. The transmissivities THH and TLH are defined in an analogous way: 

while the conservation of current requires RHH + R L ~  + THH + T i  = 1, which is a very 
useful relation for checking the accuracy of the numerical results. 

Table 1. Material parameters and critical energies (in meV) for several values of kx (in units of 
Znla, where (L = 5.65 A is the lattice constant of GaAs). The Luttinger parameters y ~ .  M. n for 
GaAs and AlAs have been taken from [U]; the corresponding values for the alloy AIO.~GBO~.,AS 
were obtained by linear interpolation. The parameters r-. r+ nre defined in the text. The 
critical energies E,, E;. E l  and El are mesured from the lop of the valence band of the 
corresponding matend, and consequently inside the barrier (well) the valence band offset AE 
should be added (subtracted). From 126. 271 AE(x) = 0.4 x ( 1 . 0 4 ~  + 0.47~’). which gives 
AE = 141.72 meV for x = 0.3. ~ ~ 

Material parameters GaAS AlazGaoiAs 

YI 6.85 5.83 
YI 2.1~ 1.674 . -  
n 
r- 

2.9 2.417 
-20.89 -21.08 

r+ 2.25 2.11 
k, = 2  x IO-’ E ,  -39.33 -39.68 

Eh 4.24 3.97 
4.99 4.67 

20.80 17.28 
k, = 4  x E ,  -157.30 -158.73 

Er  16.95 15.88 
19.95 18.69 
83.21 69.11 Ei 

k, = 6  x IO-’ E,  -353.93 -357.15 
E; 38.14 35.73 

4 . 9 0  42.05 
187.22 155.05 E, 

E; 
EI 

E; 

E; 

3. Symmetry of the hole scattering matrix 

The symmetry properties of the hole reflection and transmission coefficients can be 
easily formulated using the formalism of the scattering matrix 1241. Figure 3 represents 
schematically the general problem of two incoming waves (HH and LH) impinging towards 
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GaAs AI,Ga,,As GaAs 

Figure 3. (a) Schematic representation of the problem from a scattering matrix point of view. 
The square box represents the target (banier or well). and the mows the incoming and outgoing 
probability amplitudes: (b) schematic representation for scattering from a barrier potential; (c) 
schematic representation for scattering from a well potential. 

the target (from the left and right sides), together with the corresponding reflected and 
transmitted waves. 

The scattering matrix S is such that applied to the vector I of incoming amplitudes it 
yields the vector 0 of outcomins amplitudes 

O = S I  (1% 

where 

and, using the notation of equations (14a) and (14c), 

The right-hand side of equation (20) represents the scattering matrix in terms of the 
transmission and reflection amplitudes. To give some examples, QH represents the amplitude 
probability that a left-incident HH be reflected as HH, while r h  corresponds to the amplitude 
probability that a right-incident HH be reflected as LH. As by conservation of the particle 
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number, the current density should be the same when evaluated to the left and the right 
sides of the obstacle, the following equality must be fulfilled: 

( I d  - lW2)jH + (IC? - ldI2)ji = (Id - I f l z ) j H  + (lgl2 - lhlz)jL 

laI2jH + lcI2jL + lfl’h + lhI2jL = lblZjH + l M 2 j L  + kl2& + lglzjL (23) 

(22) 

which can be rewritten as 

and, in order to lighten the notation, j,, = jz. .. On defining a 4 x 4 diagonal current matrix 

and two four-component vectors 

the current-conservation constraint arising from equation (23) can be written in m a ~ x  form: 

vivo = Vrbi (26d 

OtJO = I t J I .  (26b) 

or equivalently 

But according to (19) 0 = SI, 0’ = I tS t ;  replacing these two relations in (26) we 
get ItStJSI = I t J I ,  which implies 

StJS = J or S-’ = J-WJ (27) 

which is a generalization of the usual unitary condition S-’ = St one gets for electrons 
from current conservation [24]. 

The next symmetries to be considered are the ones associated with time-reversal 
invariance and twofold rotation along the z axis; a related analysis has been carried out in 
[18] in the original basis of the 4 x4  Luttinger Hamiltonian, with the purpose of determining 
the parity of the bounded-hole solutions of a semiconductor quantum well. 

For a system of a single electron the result of Kramers for the time-reversal operator 
is K = iu,.Ko, where uy is the y-component of the spin-1/2 Pauli matrices, and KO in 
the Schrodinger representation is the operation of taking the,complex conjugate [22]. The 
Bloch functions X, Y,  2 of equation (5) are invariant under K. while KI t ) = - 1  4) and 
K I L )  = If). 

Acting with the time-reversal operator on the rotal electronic wave function +(r) in 
equation (3), and using the transformation equations from the set IJ, Jz)  to the set li), we 
obtain for the envelope function 

which gives the desired expression for K in the 1;) basis. 
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For zincblende heterojunctions with a [OOl] growth direction (and, of course, also for the 
bulk material), a twofold rotation about the growth axis is a symmetry operation. Expressing 
it as R = e-i"4 and acting on +(T) we obtain 

\F4(X.y .Z) /  \ i  0 0 O /  \ F 4 ( - x . - y , ~ z ) /  
Note that both K and R mix the first two components of the envelope function with the 

last two; this is the reason for keeping the notation of the eigensolutions as four-component 
vectors (equation ( I  1)). 

The symmetry operation that really is of  interest to us is the product RK; from (28) and 
(29) we obtain 

beyond a global phase factor. 
Using this result, application of RK to states +",,(T) and +&,JT) yields 

Comparison of this solution with equation (14) shows that effectively the directions of 
motion along z have been reversed and the amplitude a has been interchanged with b', c 
with d*, f with e', and h with 2. Hence, as RK commutes with H, we may make these 
replacements in equation (19) and obtain the equally valid equation 

I* = so*; (32) 
Equations (19) and (32) can be combined to yield the condition 

S" = s-1 (33) 
which in conjunction with the pseudo-unitary relation (27) implies the following important 
property of the hole scattering matrix: 

StJ = JS*. (34) 
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A straightforward calculation with equation (34) gives the following set of non-trivial 

, .  Transmission and rejection in hezerostructures 

relations among the scattering matrix amplitudes: 

jL jL 
jH j n  
J H  jL 
J L ~  ~ jH 

-&I = SI2 & I  = SI3 -sal = SI4 
(35) 

T s32 = s23 s42 = s24 - s43 = s34 

which translate into the following symmetry relations among the reflectivities and 
transmissivities: 

THH = IS3iIZ = IS13I2 = T;IH 
2 - *’ TLL = Is4zlz = Is241 - LL 

It is importint to note that the validity of these symmetry relations goes beyond in 
the particular case of a single barrier, as it is clear from the derivation that they should 
be fulfilled in any scattering process to which the schematic representation of figure 3 
applies-the square box being a single barrier or well, a double-barrier tunnelling system, 
a superlattice. etc. 

Using similar procedures, it is easy to see that as a result of the inversion symmetry 
of the Luttinger Hamiltonian in equation (l), the problem of a left-incident hole with given 
amplitude, energy and wave vector k, is equivalent to the problem of the same hole coming 
from the right, with the same~amplitude and energy but the opposite sign of IC. Note that 
inversion is not a symmetry operation of the zincblende crystal structure; however, it ,is 
a good symmetry operation of the Hamiltonian given by equation (l) ,  because we have 
neglected k-linear terms. 

4. Numerical results 

Under the conditions explained above (for instance, a = 1 , c  = h = f = 0) the task 
of finding the transmission and reflection coefficients amounts  to^ solving ,numerically an 
inhomogeneous linear system of eight equations. We present in this section some results 
of these calculations for barrier and well geometries; unless stated otherwise, L (barrier or 
well size) = 50 A, A E  = 141.72 meV (corresponding to an AI mole fraction x = 0.3) and 
k, = 2 x 10-2(2a/a). Values of the remaining material parameters are given in table 1. 

(a) Scatteringfrom a barrierpotenrid Pgure 3(b)). We display in figure 4 the energy- 
dependent reflectivities and transmissivities corresponding to the case of a HH impinging 
from the left on a Al.&~..rAs barrier. As expected, for energies much smaller than the 
barrier height, the reflectivities are close to unity while the transmissivities are close to 
zero. According to table 1. for E c E I ( G ~ A S ) Z  21 meV no reflection or transmission 
of LH is possible, and consequently RHH 1. At E = E,(GaAs) the light-hole channel 
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Figure 4. ReRectiviIies and transmissivities corresponding to P heavy hole impinging on a 
barrier from the left. The origin of energy has been a e n  at the top of the GaAs valence band. 
L = 50 A md kx = 2 x 10-2(2nlo). Key: .... Rm + RW; -. R w ;  .... RLH: ...... Tun; 
....... . TLH. 

opens for reflection (and transmission), and accordingly the off-diagonal reflectivity RLH 
rises abruptly (as in this regime RHH N 1 - Rw, the diagonal reflectivity has a strong 
decrease). While this behaviour of reflectivities that increase with energy (for energies 
below the barrier threshold) contradicts what one intuitively expects, the total reflectivity 
RHH + Rw decreases when the energy increases, as expected. The abrupt change in RHH 
and RLH can be understood qualitatively in the following way: when E <( AE the barrier 
behaves as a strong scattering centre, and one should expect considerable reflection and 
heavy-light-hole mixing effects. While the former effect is evident for E < E!(GaAs), 
the mixing reveals abruptly for energies slightly larger than this energy, as in this regime 
one expects both RHH and Rw to be of the same order of magnitude. A more quantitative 
analysis is possible by assuming that when E << A E ,  the barrier is equivalent to an 
infinitely high potential step. Analytic solutions for RHH and RLH are available in this case 
[12]. Expanding these coefficients for energies close to E,(GaAs) one finds, for instance, 
that RHH(EI + E )  N 1 - q& (E  +-O+, q being an energy-independent coefficient), which 
explains the infinite slope in RHH and R w  when the LH channel opens for reflection. The 
next interesting feature of figure 4 happens at E = E;(Alo.sG~.7As) + AE 2: 146 meV, 
where the HH channel in the barrier opens for transmission and consequently THH starts 
to rise. Similarly, at E = E~(Alo.~Gao.~As) + AE N 159 meV the LH channel opens, 
and TLH increases; the increase of the transmissivities is followed by a decrease of 
the reflectivities; Note that for E Y 215 meV the total reflectivity (transmissivity) 
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RHH + RLH (THH + TLH) shows a weak increase (decrease); this is associated with the 
building of a very primitive above-the-barrier resonkt state. While electrons have an infinite 
number of above-the-barrier resonant energies, where the transmissivity equals unity and 
reflectivity zero, we have found that the equivalent effect for the holes, due to the mixing 
at k, # 0, only exists for very special choices of the parameters involved. As expected, at 
even larger energies, all the reflectivities and off-diagonal transmissivity tend to zero, the 
only survival being the diagonal transmissivity R H H ,  as mixing and reflection barrier effects 
become progressively less important. 
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. .  

;0 
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Figure 5. As figure 4, but for 311 Impinging light hole. Key: -, RLL; - - -, RNL: TLL: . TnL .. ._ 

Figure 5, corresponding to a LH impinging from the left (c = 1, a = f = h = 0) on 
the same bmier as shown in figure 4, while it is qualitatively similar to the previous figure 
(under the L tt H change), shows some differences, detailed below 

(i) The threshold energy for propagation of a LH state in the left region is given by 
E,(GaAs) Y 21 meV, and not E;(GaAs) Y 4 meV, as corresponds to the HH propagation 
of figure 4. 

(ii) While for the case of an impinging HH both the diagonal and off-diagonal 
transmissivities THH and TLH are essentially zero for energies below the critical barrier 
values E;(AIO.~G~O.~AS)+ AE and E I ( A I ~ . ~ G ~ . ~ A s ) + A E ,  respectively, the corresponding 
magnitudes TLL and THL are sizable almost as soon as the LH channel is open for incidence 
in the GaAs semi-infinite ~regions. That means that the barrier is more 'transparent' for 
tunnelling of LH than for tunnelling of HH, which is reminiscent of the situation for k, = 0. 
This is easily understood by recalling that for E < E,,,(Al0.3Gai,.~As) + A E ,  kjH) and kf" in 
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the barrier material are pure imaginary and obey the condition Ikk'I c @ I .  This means 
that the decay length of the LH solution through the barrier is smaller than the decay length 
of the HH solution, and consequendy its transmissivity is bigger. 

From the comparison of figures 4 and 5 it is important to note the equality RLH = RHL, 
as required by the symmetries of the hole scattering matrix given at the end of the previous 
section. It is also worth commenting on the lack of any abovebarrier oscillation in the 
diagonal transmissivity TLL. This is related to the fact that for E > E~(AI.&~~.~AS) + A E ,  
both k!H) and k:) are real and such that Ik;"'l > lk!')l. Consequently, the condition k,L Y 1 
is reached earlier for HH than for LH, &d the oscillations are absent in the latter case (they 
appear, however, at higher energies). 

As a check of the symmetry relations, we present in figure 6 the reflectivities and 
transmissivities associated with a right-incident HH (f = 1, a = c = h = 0);  comparison 
with figures 4 and 5 yields the equalities THH = TAH, TH' = T&, as required by 
equation (36) .  

A D Sdnche: and C R Proetto 
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Figure 6. As figure 4. but for P heavy hole impinging from the right. Key: -. R h :  - - -. 
RLn: _.._. T' * -. LH' 

(b) Scartering from a well potential figure 31~) ) .  
Turning now to the well configuration, where the GaAs and AI~ ,~GQ.~As  materials are 

interchanged, we display in figure 7 the reflectivities and transmissivities for a HH impinging 
from the left. The origin of energy has been taken at the bottom of the barrier valence band 
material, and k, = 4 x 10-2(2z/a). Our analyses in this configuration are complementary 
to the results presented in [NI, as they study the E -= 0 quantum-well-bounded solutions, 
whereas the present results are for the E > 0 scattering states. 
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Figure 7. Reflectivities and transmissivities corresponding to a heavy hole impinging towards 
an A~~JG~J.~ASIG~ASIAI ,~.~GSJ.? As suantum ~ l l .  E = 0 corresponds now to the top of the 
A10.1Gqj.7 As valence band; L = 50 A. and k, = 4  x 10-2(2n/n). Key: -, RHH: - - -, RLH; 

THH' . T LH. , .  

According to table 1, the criticat energies corresponding to Alo.,Gaa.TAs are E; Y 

16 meV, Eh+ Y 19 meV, and El N 69 meV, while the corresponding values for the well 
material are at negative energies, and consequently are of no concern to us. Clearly at 
E;(A~O.~GQ~AS) both heavy- and light-hole channels open for transmission and reflection, 
at EZ(Alo.lGaa.7As) the LH channel is not available.any more in the semi-infinite-barrier 
regions, until at EL(Alo.3Gao.7As) it is possible again to use this channel for reflection and 
conduction. This essentially explains the abrupt change of the corresponding reflectivities 
and transmissivities at these critical energies. 

An interesting result is found in the E:(AIO.~GQ.,AS) < E c Ei(Alo.3Gaa7As) energy 
range, where the only possibilities for reflection and transmission are the HH states, as for 
a given E Y 35 meV, RHH equals exactly unity, and accordingly THH = 0. To understand 
this at the first sight strange result, it should be realized that for any incident energy inside 
this window, the LH is quasi-confined while the HH is free. Accordingly, the, first presents a 
quasi-discrete spectrum, degenerate with the continuum of the second. This is reminescent 
of the problem studied by Fano a long time ago [28], where he finds that resonance/anti- 
resonance pairs occur whenever a discrete state is coupled to a continuum. Very recently, 
the same problem was addressed by Boykin et al [29], who finds that when a cavity [well) 
weakly confines one pair of states and strongly confines the other [but with both belonging 
to a continua), the transmission coefficient for the weakly confined state displays only anti- 
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Figure 9. As figure 7. but for an impinging light hole with, kx = 2 x 10-2(2z/u). Key: -, 
R w ;  - - -, RHL; TLL: THL. 

5. Conclusions 

This work has been devoted to the theoretical study of the quantum mechanical problem of 
tunnelling and reflection of holes from barriers and wells in semiconductor heterostructures. 
The calculation has been done within the framework of  the^ envelope-function approach 
which is based on the effective-mass approximation. By using the Luttinger Hamiltonian 
to describe the dynamics of holes close at the top of the valence band, we have taken into 
account exactly the band non-parabolicity, anisotropy, and heavy- and light-hole mixing 
away from the Brillouin zone centre. 

We have worked out the symmetries of the hole scattering matrix which arise as a 
consequence of time-reversal and spatial invariances; they translate into very general and 
useful relations among reflectivities and transmissivities. 

We also provide a complete set of numerical 'results concerning the reflection and 
tunnelling of holes impinging on bwiers and wells. A clear interpretation of the results 
is given in terms of critical energies, where a channel available for conduction disappears 
(or vice versa), and the remaining coefficients change abruptly as a result of the current- 
density-conservation constraint. 

Contrary to what is found in the electron case, the building of above-the-bgrier (or 
above-the-well) resonant states, with unity transmission coefficient, does not seem to be a 
general situation away from the zone centre. This is due to the fact that in the presence of HH 
and LH mixing, the condition for the building of such resonance is much more restrictive 
than in the case where kx = 0. In contrast, we have found strong anti-resonances for 
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Fiyre 10. Diagonal reflectivity RHH for B heavy hole impinging towards barriers of several 
widths from the left. The energy of the incident panicle is E = 100 meV. 

scattering from a well potential, for a situation where the impinging HH is free, while 
the LH is quasi-confined in the well. This effect, related to a destructive interference 
between the two coupled channels, is accompanied by a maximum of the LH density in the 
well. Considered from a broader perspective, beyond the semiconductor condensed-matter 
framework in which the calculations have been made, the present work is a contribution to 
the general problem of scattering from a target where mixing among the different channels 
occurs, restricted to the simplest case of just two possible incoming and outgoing channels. 
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