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Abstract. The quantum mechanical problem of tunnelling and reflection of holes from
barriers and wells in semiconductor hetercjunctions has been analysed. By using the Luttinger
Hamiltonian to describe the dynamics of holes, the inherent anisotropy, non-parabolicity and

- heavy- and light-hole mixing at the top of the valence band has been taken into account.
The symmetries of the hole scattering matrix are worked out, from which very general
relations among the reflectivities and transmissivities are obtained. These analytical results
are complemented by numerical calculations for several different situations: within the range of
parameters investigated, no resonant unity transmission above the barrier is found. We do find
that the transmission is zero (anti-resonances) in the well configuration for particular values of
the energy of the incoming heavy hole.

1. Introduction

Tunnelling and reflection from cne-dimensional square barriers and wells are traditional
problems of quanturn mechanics;, however, for several decades they were considered
instructive but essentially academic idealizations of real physical systems. With the arrival of
the manufaciured semiconductor heterostructures, these problems became also of practical
interest, as the epitaxial growth heterointerface between two different semniconductors is
dlmost an ideal realization of a step potential. Among the many unexpected results that
these systems produce in the field of basic physics one might mention the integer [1] and
fractional [2] quantum Hall effect, the unambiguous observation of Wannier-Stark ladders
in superlattices [3], and the quantization of the electrical conductance in quantum-point
contacts [4, 5]. On the other hand, the interest comes also as a consequence of their potential
applications in electronic (for instance, resonant tunnelling diodes) and optoelectronic (for
instance, quantum-well lasers) devices.

Many theoretical methods have been applied to study thelr band structure, electronic
" and optical properties [6]. These methods can be divided into two general classes: the
super-cell approach in which the heterostructure is viewed as a material with a large unit
cell [7], and the boundary-condition approach in which bulk wave functions for each of the
constituent semiconductors are matched at the heterostructure interfaces [8, 9]. Within the
latter category, the envelope-function approach, based on the effective-mass approximation
[10], is easy to apply; besides, it is particularly suited to including external perturbations,
such ag electric and magnetic fields, and uniaxial stress.

While experiments concerned with the electronic and optical properties of electrons
in HI-V compound semiconductors at the bottom of the conduction band c¢an be usually
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2060 A D Sdnchez and C R Proetto

described assuming a parabolic and isotropic dispersion relation, the situation for holes is
more involved. As a consequence of the degeneracy at the top of the valence band, one
is forced to use a multiband effective-mass theory, that in the case of GaAs-Al.Ga;_ As
implies the use of the 4 x 4 Luttinger Hamiltonian [11]. at least for energies smaller than
the bottom of the I'; spin-split-off doublet (~340 meV),

The aim of the present contribution is to generalize the well-known textbook results for
the transmission and reflection of electrons by one-dimensional potentials to the case of holes
described by the 4 x4 Luttinger Hamiltonjan. A first step in this direction has been made by
Chuang [12], who considered the refraction holes at a single heterointerface (the equivalent
of a step potential for electrons). In this work, we have extended these results to the case of
refraction by potential barriers (including the case of a single heterointerface as a limiting
case) and wells. Besides, this we include an analysis of the symmetries of the transmission
and reflection coefficients, by making an extension of the one-channel scattering matrix
formalism to a multi-channel case. The understanding of the dynamics of holes against
simple obstacles such as barriers and weils is quite important, as they can be considered as
the building blocks of more complicated devices, such as double-barrier resonant tunnelling
systems and superlattices. Another situations where two or more pairs of states coexist at a
given energy in a scattering process are: I'-X mixing of electrons tunnelling through AlAs
barriers {13, 14]; wansmission across quasi-one dimensional systems [15]; and interband
tunnetling [16, 17].

The scheme of calculation is similar 1o the one adopted by Andreani, Pasquareilo and
Bassani [18], Wessel and Altarelli [19], and Chao and Chuang [20] in their complementary
study of the bounded-hole solutions of GaAs—-Ga;_; Al;As quantum wells. We first solve the
effective-mass equation in the well and barrier materials, and then match the bulk solutions
at the heterointerfaces in order to find the eigenstates. The calculation scheme differs,
however, in an important point: while the bulk solutions of [18] are linear combinations of
four-component vectors, our use of a canonical transformation of the Luttinger Hamiltonian
decouples it into two 2 » 2 blocks [21], and greatly simplifies the numerical calculation. A
similar approach was used in [12].

From a more general perspective, the problem addressed in this paper can be considered
as the simplest extension of the scattering mairix formalism, that usually considers only one
type of propagating state in each region of space, to the case of two types of propagating
states in each region of space (heavy and light holes). The connection with the scattering
formalism proves to be quite useful, as it allows us to obtain guite general symmetry
properties of the transmission and reflection coefficients. .

The remaining part of the paper is organized as follows. We give in section 2 the
canonical transformation which reduces the original 4 x 4 Luttinger Hamiltonian to two
decoupled 2 x 2 blocks; we discuss the bulk solutions of each block, the defipition of
the probability current density, and also the corresponding boundary conditions that should
be applied to match bulk solutions across each interface. In section 3 we discuss the
general symmetries of the transmission and reflection coefficients, by making an extension
of the scattering matrix formalism and using the time-reversal and spatial symmeiries of
the Hamiltonian. Section 4 is devoted to the numerical results, and there we present the
transport coefficients both for the barrier and well cases. Finally, we give our conclusions
in section 5.
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2. Canonical transformation, hole wave functions, dispersion relations, probability
currents and boundary conditions

We consider a potential barrier (well) of Al,Ga,.. As (GaAs) embedded in an otherwise
homogeneous GaAs {(Al,Gai_.As) host matrix, grown in a (100} direction, which we take
along the quantization axis z. Due to translational symmetry in the (x, y) plane of our
system, the envelope wave functions can be written as a plane wave along this plane times
a wave function along z, the latter given by the solution of the following 4 x 4 block
diagonalized effective-mass matrix Hamiltonian [21]:

P+Q R 0 0 .

] R pP-0Q 0 0 _(HY 0

H= o o P_o +V(z)l=( 0 HL)—I—V(z)I (1)
0 0 Rt P+Q

where V(z) = & AE 6(z)}0(L — z) is the barrier (+) or well (~) potential (AE being the
valence band offset), &, is the operator —i3/dz, .

-

PrQ= ;‘m [(y{i PIGE + D) + O F 2y 2a)
R= «/E% (k2 — k2 — 2iyskcky] (2b)
§=43 %:- yalke — iky) ' (2¢)
© R = |R| - ik[S] (2d)

and the hole energy has been counted as positive: In equation (2) m is the free-electron

mass, and j;, 3, ¥ are the Luttinger parameters corresponding to the barrier or well and

semi-infinite layer material. In writing the kinétic energy we have neglected very smali

linear k-terms caused by the lack of inversion symmetry of the zincblende structure [10].
The Harniltonian (1) acts on a four-component envelope function

F@) =[Ak), L@, i), ful2)]
while the total electronic wave function is approximately given by
(r) = &SN £ (1) + A2 + HEB) + fu@)4)]
= Fi(r)|1) + Fa(r)|2} + F3(r)|3) + Fa(r)l4). (3

The states [1}, |2}, |3}, and [4) which yield the block-diagonalized form of the Luttinger
Hamiltonian are linear combinations of the usual 'y Bloch functions {J, J;) of both materials
at k =0, as follows:

e
2 =82, ~3)~ #]5. +3) @
i
NS



2062 A D Sdnchez and C R Proetto

where o and £ are chosen so that the Luttinger Hamiltonian in the new basis has the
block-diagonalized form (1).

Following standard procedures we may represent schematically the total-angular-
momentum states [J, J;) using the space Bloch functions X, ¥, Z and the spin functions

|1) and [])

%’J’%): %(X-HY)H‘)

5= :%(X —im) +‘/§z1 Y

%’Jf‘li): %(xml’)i b+ \EZI 1) ®)
2-3)= —fj<X—iY)| b

where X, Y and Z being functions which transform in the same way as the atomic x-, y-, z-
functions under the symmetry operations which map the local tetrahedron onto itself.

To proceed, we discuss first the eigenvalues and eigenfunctions of equation (1) for the
bulk situation V' (z) = 0, as these solutions will be the basis for the problem with a potential
barrier or well along z.

(a) Bulk solutions As result of the translational symmetry along z, the envelope function
along this direction is also a plane wave with wave vector &, and consequently the operator
I‘c in equation (2) becomes just a number (&,).

From the diagonalization of each 2 x 2 block of equation (1) we obtain the well-known
bulk dispersion relation for the valence band in [II-V compound semiconductors [22]:

E(k) = Ak® £ [B%° + C(E2K2 + 1242 + 22)] ©)

where A = (/2m)y1, B = (W /m)ys, C* = Bh*/mD(yf — 3}, K2 =k + K+ and
the -+ (—) sign refers to light (heavy) holes; each eigenvalue is twice degenerate, as a result
of time-reversal and inversion symmetry. As will become clear below, the magnitude of
interest to us is &, as a function of E (for a given &, and k,); from equation (6) we easily
obtain

2 1 2 2_CN\ .2
kz(k_;, E) = ‘("-m')' [AE— (A — B* — ?)kx

c2 1/2

F [3252 + ACER: = C? (A2 - B - 2 )k“] } 7
where the — (4-) sign corresponds to light (heavy) holes and we set k, = 0 for simplicity. A
graphical representation of this equation using Luttinger parameters corresponding to Gads
is given in figure 1 for heavy holes (HH) and figure 2 for light holes (LH), for a typical value
of ky = 6 x 1072(2% /a); corresponding numerical values are given in table 1. As these
dispersion relations will be the basis for our interpretation of the reflection and transinission
coefficients, they deserve a few comments, which we will now list.

(i) There are two critical energies E; (> 0) and Ep (< 0). If E < Ey both solutions
of k; are pure imaginary, with the absolute value of the LH solution being smaller than
that of the HH solution: kM| < [k{™]; in the limit E — —o0, k¥ - +i/-EJ(A+B),
while £ — :i:i\/_—Ewy—bB—). For energies in the range Ey, < E < E;, both solutions
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Figure 1. Bulk GaAs real and imaginary components of the heavy-hole wave number
k§ Y as a function of energy; the origin of epergy is at the top of the valence band, and
ky = 6 x 107%(2n /). Propagating states are allowed when E > E;.

of k, are complex, with real and imaginary non-vanishing components. A simple analysis
of equation (7) shows that in this case the real and imaginary parts of k(" and & should
fulfil the conditions Re £ = F Re k" and Im kgH) = = Im k{"; as can be seen in figures
1 and 2, we have chosen to have equal (unequal) signs for the imaginary (real) component.
Mathematically, these latter solutions arise when the argument inside the square root in
equation (7) is negative, and from the condition that the argument be zero we obtain

h2g2 k2
En=0" me E  =Irt—=. &)

2m
where

, : 112

3 i =) 4 7

O R | D e £ A 2 I
2w 3RE—vp 2T

Both types of solutions (pure imaginary and complex), while unphysical in a bulk
situation, should be considered in the present problem, as they are physically acceptable
solutions for finite regions such as barriers and wells. '

(ii) For E > E;, the HH solution is real; the same is true for the LH when E > E,.
Imposing the condition k; = ( on equation (7) we obtain two solutions:

2;2

E={n+2y) me - 9
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Figure 2. Bulk GaAs real and tmaginary components of the light-hole wave nember J:f‘) asa
function of energy; £ = 0 corresponds to the top of the valence band, and ky = 6§ x 10~2(2r /).
Propagating states are allowed when £ > E) and in the window between E; and El':' .

and

272
Ef =(n=-2m7 =t : (10)

The significance of these two energies is that £{) becomes pure imaginary when
E"' < E < Ej, while it is real in the window E; < E < E;' Some words are in
order concerning this classification of solutions as heavy or light. While the distinction is
clear for energies E > E), as E — A(k2 + k2) (see equation (6)) is positive for k() and
negative for k(H), it becomes more comphcated at lower energies. By following the sign of
the function B — AE+ D2 for decreasing values of E (E < Ey), it is seen that the pure
imaginary solution kg’“) evolves progressively towards a pure imaginary HH solution, and
when E < E < E;' in a propagating HH solution. That is, the solution that by convenience
we call light in figure 2 is actually of heavy type below some threshold energy between B
and Ei.

The eigenvectors associated with the eigenvalues (6) are

F1u FiL
U Fay ] Liker U Fa | iker
Yau™ = | "5 |¢ Y™ =] "5 |¢ (11a)

0 0
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0 0

ey =| % |e#r ey =] 0 |ewr (11%)
HH FZH LH FL
Fih F]L

where Figg = (P—Q~E)/Ny, Fyu = —R'/Ny, Fi = R/N, Fy = (E—P—Q)/Ny. and
Ny =(P—0—E+ R, Ny = (|E — P — Q1*+|R|%)!/? are normalization constants.
‘While the eigenvector notation ‘as a four-component vector is redundant, its usefulness will
be clear in the next section, where the symmetry properties of the Hamiltonian will be
analysed.

Both for checking the consistency of the boundary conditions across each interface
and for the calculation of the reflection and transmission coefficients we need an explicit
expression for the probability current in a multiband situation within the effective-mass
approximation. As this has been already discussed elsewhere [23], we just quote the resuit
for the probablhty current density along z:

jz.n=Re— [[y](|F.n| +1F2n!2>—2yz(im|2—|Fm12)]k§"’+iz«/5y3FMF;,,kr} (12)

with # = H, L.

Moreover, as for the calculation of the scattering coefficients we will evaluate the
probability current density at the asymptotic semi-infinite regions z — =toc, only real
values of £ and &{" are allowed in equation (12), corresponding to propagating states.
Under this condition, the expression simplifies considerably [12]:

By [(y[ + 20} — 6yDIE + (1 — Ay — 2my, E/ﬁz]

13
k2 — 2mE i )

Jen =
m

“For the simplest case k, = 0, k™ = k! = k,, and equation (13} reduces to
) h
Jou=—(n — 2k,

. h
JaLs ;'n“(}’l + 2wk,

which is the usual result for particles with parabolic and isotropic dispersion relations. Note
that when &, = k, = 0, all the off-diagonal terms in the block-diagonalized Luttinger
Hamiltonian vanish, and what remains are the diagonal terms with electron-like kinetic
energy and effective-masses m /() — 2y») (heavy hole} and m /(3 + 2)») (light hole).
Real positive (negative) values of k™ correspond to right- (left-) propagating holes;
following the notation of [12] we will denote the current associated with the right- (left-)
propagating states as jg n (j—;..); from equation (13) it can be seen that j; , = —j_zn.

(v) Heterojunction solutions. As the presence of interfaces along z breaks the
translational symmetry in this direction, plane waves with %, become mixed with —k,, while
k, and %, remain good quantum numbers. Accordingly, the more general upper-block wave
function corresponding to the semi-infinite layer to the left of the barrier or well is given
by a linear combination of heavy- and light-hole states moving in both directions along z:

Fiu Fiiy
1/’1%31&(7') =% | g }%H ei"?i ’z+c FSL eikél-)z

0 . 0
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Fiu FE
+b | 28 e~y g %‘* gz (14a)
0 0

where @ and ¢ are amplitude probabilities for left-incident heavy and light holes, while b

and d are the corresponding reflection amplitudes; k™ and k(™ are the HH and LH solutions

of equation (7) for a given k. and energy E, Fopy = Fu(—k™) and Fj; = Fu_(—kgl')).
The associated solution in the barrier or well intermediate region is

E‘m EL
Pl (1) = b | o F(?)‘H e”zémz-Fﬂ FSL iz
\ 0 0
/ EI_E* EL
2 A R I P (14B)
\ 0 0

with F and k, denoting magnitudes evaluated at the barrier or well region.
Finally, the solution at the right semi-infinite layer is given by

. Fiy Fu
":b}ilghr("') =g e Fgﬂ iz te FSL QI
0 0
P Fi
+f FSH e—ikimz n FSL o=z ”
0 0

with ¢ and g being transmission amplitades, and f, & right-incident amplitudes. A. trivial
generalization (using (11&)) gives a similar set of solutions corresponding to the lower block
of equation (1).

Once interfaces between two semiconductor materials along z are allowed, the question
about the boundary conditions naturally arises; besides the continuity of the envelope
function at each heterointerface, a second set of boundary conditions is obtained by
integrating equation (1) between zo — ¢ and zg + € with zy the interface coordinate, and
taking the limit ¢ — 0 (¢ > 0) [10]. The explicit expression for the resulting boundary
matrix can be found elsewhere [23]; it is quite reassuring that this procedure is consistent
with the requirement that the probability current density given by equation (12) be constant
along z. Application of these boundary conditions to both interfaces at z =0 and z = L
yields a homogeneous sysiem of eight linear equations (four at each interface) for the twelve
unknowns a, b, ¢, d, , 8, ¥, 8, e, f, g and A. In order to have a mathematically well-defined
problem we should take, for example, 2 = 1 and ¢ = f = A = 0 in equation (14), which
amounts to limiting curselves to the case of an incident HH coming from z = —00. As a
result of this simplification we obtzin an inhomogeneous system of eight linear equations
whose solution can be found numerically; the corresponding results will be given in the
next section.

Assuming that we have found these eight amplitude probabilities, the next step is the
calculation of the reflection and transmission probabilities. Let us define the reflectivity for
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the heavy hole Ryy and for the light hole Ry as

b%j_
R = — 2Tz g2 (15)
Jz.H
and
ditj. d\?j
PO i ST i a6
Jz.H Jz.H
respectively. The transmissivities Tuy and Ty y are defined in an aralogous way:
el ..
T = I 2 (17)
Jz.H
2 . -
TLH — |g| Jz. L R ) (18)
Jz.H

while the conservation of current requires Ryy -+ Riy + Tun + T = 1, which is a very
usefual relation for checking the accuracy of the numerical results.

Table 1. Material parameters and critical energies (in meV) for several values of k. (in vnits of
27 fa, where ¢ = 5.65 A is the lattice constant of GaAs). The Luttinger parameters y(. ¥z, ¥; for
GaAs and AlAs have been taken from [25]; the corresponding values for the alloy Alo3Gan7As
were obtained by linear interpolation, The parameters I'~, '+ are defined in the text. The
critical energies Ep, £, . £ ond Ej are measured from the top of the valence band of the
corresponding matenal, and consequenatly inside the barrier (well} the valence band offset AE
should be added (subtracted). From [26, 271 AE(x) = 0.4 x (1.04x + 0.47x%), which gives
AE = [4]1.72 meV for x =0.3. - :

Material parameters  GaAs Aly3Gap7As

by =2 x 10~2
=4 x 1072
ky =6x 1072

¥ 685 583
2 : 2.1 1674
» 29 2417
r- 2089 —21.08
r+ 225 2l
En —39.33 -39.68
Ef 424 397
E} 499 467
& 2080 17.28
Em —157.30 —158.73
Ef - 1695 1588
B} 1995  18.69
£ 8321 69.11
Em —35393 —357.15
BT 3814 3573
EF 4490 4205
E| 18722 155.05

3. Symmetry of the hole scattering matrix

The symmetcy properties of the hole reflection and transmission coefficients can be
easily formulated using the formalism of the scattering matrix [24]). Figure 3 represents
schematically the general problem of two incoming waves (HH and LH) impinging towards
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a)
- — T
¢ I
--(b—— -1-*—-f—
I B . h
b) E—
GaAs Al,Gap,As GaAs
o) E— ~

Al,GayxAs| GaAs [AlGayAs

Figure 3. (a) Schematic representation of the problem from a scattering matrix point of view.
The square box represents the target (barrier or well), and the arrows the incoming and outgoing
probability amplitudes; (b) schematic representation for scattering from a barrier potential; {¢}
schematic representation for scattering from a well potential.

the target (from the left and right sides), together with the corresponding reflected and
transmitted waves. .

The scattering matrix S is such that applied to the vector I of incoming amplitudes it
yields the vector Q of outcoming amplitudes

0 =8I (19
where
Su Sz Sin Suis FHH THL Mg Gy
S S S RY r Fe t t
S = 21 522 23 0u | LH fLL LH  CLL (20
S31 832z S Sm IBH L fpg oo
Sa1 Sp Sz Sy e AL Ny ML

and, using the notation of equations (14z) and (14c¢),

b a
d c

0= . I = 3k (21)
g h

The right-hand side of equation (20) represents the scattering matrix in terms of the
transmission and reflection amplitudes. To give some examples, ruy represents the amplitude
probability that a left-incident HH be reflected as HH, while r{; corresponds to the amplitude
probability that a right-incident HY be reflected as LH. As by conservation of the particle
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number, the current density should be the same when evaluated to the left and the right
sides of the obstacle, the following equality must be fulfilled:

(al® = 1B1*Y ju + (e — |dD) i = Gel* = 1/PYu+ gl — R (22)
which can be rewritten as
lal® i+ el + 1 FP s + R = 1P Ju =+ 1P o+ el + g (23)

and, in order to lighten the notation, j, = j, ,. On defining a 4 x 4 diagonal current matrix

ju 0 0 0
o & 0 O
U=lo 0 ju o @4
0 0 0 i
and two four-component vectors
Wb W a
jI_I,lz d 12 .I'Ii/2 <
Vo =J"?0=|"Tp Vi=dJd5I=| "1p (25)
| i, e K, f
) i” e .- i% n
the current-conservation constraint arising from equation (23) can be written in matrix form:
Vive =Vi'v (26a)

oT equivalently
oo = 1'JI. , , (26b)

But according to (19) O = S, O = I'St; replacing these two relations in (26) we
get I'SYUST = I1JTI, which implies

siusS=4J or -t =J-lsty 27N

which is a generalization of the usual unitary condition $~! = S one gets for electrons
from current conservation [24]. )

The next symmetries to be considered are the ones associated with time-reversal
invariance and twofold rotation along the z axis; a related analysis has been carried out in
[18] in the original hasis of the 4 x4 Luttinger Hamiltonian, with the purpose of determining
the parity of the bounded-hole solutions of a semiconductor quanturn well.

For a system of a single electron the result of Kramers for the time-reversal operator
is K = ioy Ky, where o, is the y-component of the spin-1/2 Pauli matrices, and Ky in
the Schrodinger representation is the operation of taking the complex conjugate [22]. The
Bloch functions X, ¥, Z of equation (5) are invariant under X, while K11} = —| }) and
Kily=11).

Acting with the time-reversal operator on the total electronic wave function 4 (r) in
equation (3), and using the transformation equations from the set |J, J;) to the set i}, we
obtain for the envelope function

Fy(#) 00 0 -1 Fy(r)
BR@|] oo -1 o F(r)
E@ |- lo1 0o o Ko Fy(r) (28)
Fu(r) 10 0 0 Fi(r)

which gives the desired expression for K in the |i} basis.
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For zincblende heterojunctions with a [001] growth direction (and, of course, also for the
bulk material), a twofold rotation about the growth axis is a symmetry operation. Expressing
it as R = e~} and acting on t(r) we obtain

Fiix,y.2) 0 0 0 iy /F(=x,~y,2)
FZ(x1 Y. Z) 0 ¢ i 0 F?.(_x‘ -¥, Z) (29)
stx,}’-Z) 0 i 0 0 FJ(_xr "J’:Z)
Fylx,y,2) i 00 0/ \Fy(—x,—y,2)

Note that both K and R mix the first two components of the envelope function with the
last two; this is the reason for keeping the notation of the eigensolutions as four-component

vectors {equation (11}).

The symmetry operation that really is of interest to us is the product RK; from (28) and

(29) we obtain

Fi(x,y.2) Fi(—x,—y.2)
Fyx,y,2) F(=x,~.2) 30)
F3(x, Y z) —Fg‘(—x,—y, z)
Fy(x,y,2) —Fi{=x,~¥,2)
beyond a global phase factor.
Using this result, application of RK to states 354 (r) and ¢I'{ght(r) yields
Flfl Fi
RK (1) = &% | a* F{"’j‘* e 7 4 ¢* FSI’ eik 2
0 0
Fiy Fip,
+bm FSH eikf,mz 4 a* FSL e:kﬁ"'z (3162)
0 0
B Flu FI-L
: « | For _ipdH) Fa i
RK'l,’)ng(r) =kt | e 3“ ek 4 g OL g ks
L 0 0
/ Fiu By,
ps F(:;,H ¥z 4 g IBZL olkz (316)
\ © 0

Comparison of this solution with equation {14) shows that effectively the directions of

motion along z have been reversed and the amplitude o has been interchanged with b*, ¢
with d*, f with &%, and & with g*. Hence, as RK commutes with H, we may make these
replacements in equation (19} and obtain the equally valid equation

I* =S80~ (32)
Equations (19) and (32) can be combined to yield the condition
s =8| (33)

which in conjunction with the pseudo-unitary relation (27} implies the following important
property of the hole scattering matrix:

std = Js*. (34)
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A straightforward calculation with equation (34) gives the following set of non-trivial
relations among the scattering matrix amplitudes: .

&SZI = S;z .5'31 = S]3 &.S‘” = 814 -
JH Jja o5
Ju i

=832 = Sz Siz = Sas L Sz = S3a
oo Ju

which translate into the following symmetry relatmns among the reflectivities and
transmissivities:

Tun = [S34* = |S13* = Ty
T =ISpl* = 1Sul* =T/,

L
Tin = ~=[Sy|* = .—|St412 =Ty
Ju JL
Ju Ji
T = .—|5'32|2 = ,—|'5'23|2 =Ty 36)
H
Ry = —|521 |2 = —L|512|2 = RuL
/ 2 Ju 2 !
Riy= .—|S43| = |83 = Ry
Ja JL

It is important to note that the validity of these symmetry relations goes beyond in

- the particular case of a single barrier, as it is clear from the derivation that they should

be fulfilled in any scattering process to which the schematic representation of figure 3

applies—the square box being a single barrier or well, a double-barrier tunnelling system,
a superlattice, etc.

Using similar procedures, it is easy to see that as a result of the inversion symmetry
of the Lutiinger Hamiltonian in equation (1), the problem of a left-incident hole with given
amplitude, energy and wave vector k, is equivalent to the problem of the same hole coming
from the right, with the same amplitude and energy but the opposite sign of k. Note that
inversion is not a symmetry operation of the zinchlende crystal structure; however, it is
a good symmetry operation of the Hamiltonian given by equation (1), because we have
neglected k-linear terms.

4. Numerical results

Under the conditions explained above (for instance, ¢ = 1,¢ = A = f = () the task
of finding the transmission and reflection coefficients amounts to solving numerically an
inhomogeneous linear system of eight equations. We present in this section some results
of these calculations for barrier and well geometries; unfess stated otherwise, L (barrier or
well size) = 50 A, AE = 141.72 meV (corresponding to an Al mole fraction x = {.3) and
ky =2 % 1072(2n/a). Values of the remaining material parameters are given in table 1.

(@) Scattering from a barrier potential (figure 3(b})). We display in figure 4 the energy-
dependent reflectivities and transmissivities corresponding to the case of a HH impinging
from the left on a Alg3Gag7As barrier, As expected, for energies much smaller than the
barrier height, the reflectivities are close to unity while the transmissivities are close to
zero. According 1o table 1, for £ < Ej(GaAs)~ 21 meV no reflection or transmission
of LH is possible, and consequently Ruyg ~ 1. At E = Ej(GaAs) the light-hole channel
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Figure 4. Reflectivities and transmissivities corresponding te a heavy hole impinging on a

barrier from the left. The origin of energy has been taken at the top of the GaAs valence band,

L =50A and &, =2 x 10722x/a). Key: ---, Rug + Rugs — Rusi - - = Koy == Thss

....... . Tin.

0 50 100

opens for reflection (and transmission), and accordingly the off-diagonal reflectivity Ryu
rises abruptly (as in this regime Rpyy = 1 — Rry, the diagonal reflectivity has a strong
decrease). While this behaviour of reflectivities that increase with energy (for energies
below the barrier threshold) contradicts what one intuitively expects, the total reflectivity
Ryy -+ Riyg decreases when the energy increases, as expected. The abrupt change in Ryy
and Ry can be understood gualitatively in the foilowing way: when E <€ AE the barrier
behaves as a strong scattering centre, and one should expect considerable reflection and
heavy-light-hole mixing effects. While the former effect is evident for £ < Ej(GaAs),
the mixing reveals abruptly for energies slightly larger than this energy, as in this regime
one expects both Ryy and Ry p to be of the same order of magnitude. A more quantitative
analysis is possible by assuming that when E « AE, the bamier is equivalent to an
infinitely high potential step. Analytic solutions for Ryy and Rpy are available in this case
[12]. Expanding these coefficients for energies close to E;(GaAs) one finds, for instance,
that Ruu(E) + &) = 1 — n/e (¢ ~ 0%, 5 being an energy-independent coefficient), which
explains the infinite slope in Ruyp and Riu when the LH channel opens for reflection. The
next interesting feature of figure 4 happens at E = E (Alp3Gap7As) + AE = 146 meV,
where the HH channel in the barrier opens for transmission and consequently Tuy starts
to rise. Similarly, at E = E|{Alp3Gap7As) + AE ~ 159 meV the LH channel opens,
and Tpy increases; the increase of the transmissivities is followed by a decrease of
the reflectivitics. Note that for £ =~ 215 meV the total reflectivity (transmissivity)
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Ruy + Ry (Tyg + Tin) shows a weak increase (decrease); this is associated with the
building of a very primitive above-the-barrier resonant state. While electrons have an infinite
number of above-the-barrier resonant energies, where the transmissivity’ equals unity and
reflectivity zero, we have found that the equivalent effect for the holes, due to the mixing
at k, # 0, only exists for very special choices of the parameters involved. As expected, at
even larger energies, all the reflectivities and off-diagonal ransmissivity tend to zero, the
only surviva) being the diagonal transmissivity Ry, as mixing and reflection barrier effects
become progressively less important.

1.0

- o

’ 0_8 | \ .,','

06 RN i

- -~ i

0 50 100 50 200 250

£ (meV)

Figure 5. As figure 4, but for an impinging light hole. Key: —, Ryp; - - -, RuL: —-- s T
mowee, THL

Figure 5, corresponding to a LH impinging from the left (c = l,a = f =k =0) on
the same barrier as shown in figure 4, while it is qualitatively similar to the previous figure
(under the L «+ H change), shows some differences, detailed below

(i) The threshold energy for propagation of a LH state in the left region is given by
E1(GaAs) =~ 21 meV, and not E; (GaAs) = 4 meV, as corresponds to the HH propagation
of figure 4,

(i) While for the case of an impinging HH both the diagonal and off-diagonal
transmissivities Tyy and Ty are essentially zero for energies below the critical barrier
values E; (Alp3Gag7As)+ AE and E|(Aly3Gag7As}+ AE, respectively, the corresponding
magnitudes 7 and Ty, are sizable almost as sodn as the LH channel is open for incidence
in the GaAs semi-infinite regions. That means that the barrier is more ‘transparent’ for
tunnelling of LH than for tunnelling of HH, which is reminiscent of the situation for k; = 0.
This is easily understood by recalling that for E < En(Aly3Gap7As) +AE, k%Y and k(" in
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the barrier material are pure imaginary and obey the condition [k < [k#”|. This means
that the decay length of the LH solution through the barrier is smaller than the decay length
of the HH solution, and consequently its transmissivity is bigger.

From the comparison of figures 4 and 5 it is important to note the equality Ry y = RuL,
as required by the symmetries of the hole scattering matrix given at the end of the previous
section. It is also worth commenting on the lack of any above-barrier oscillation in the
diagonal transmissivity 77, . This is related to the fact that for E > Ej(Aly3GagrAs)+ AE,
both k™ and £{1 are real and such that [k{F] > |k{). Consequently, the condition k,L = 1
1s reached earlier for HH than for LH, and the oscillations are absent in the latter case (they
appear, however, at higher energies).

As a check of the symmetry relations, we present in figure 6 the reflectivities and
transmissivities associated with a right-incident HH (f = 1,4 = ¢ = k& = 0); comparison
with figures 4 and 5 yields the equalities Ty = Ty, T = Iy, as requited by
equation (36). ’

l T
0 50 100 150

T
200 250
E (meV)
Figure 6. As figure 4, but for 2 heavy hole impinging from the right. Key: ~—, Ry - - -,
Rugt == T - Ty

{b) Scartering from a well potential (figure 3(c)).

Turning now to the well configuration, where the GaAs and Aly3Gap7As materials are
interchanged, we display in figure 7 the reflectivities and transmissivities for a HH impinging
from the left. The origin of energy has been taken at the bottom of the barrier valence band
material, and k. = 4 % 1072(2x/aq). Our analyses in this configuration are complementary
to the results presented in [18], as they study the E < 0 guantum-well-bounded solutions,
whereas the present results are for the £ > 0 scattering states.
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Figure 7. Reflectivities and transmissivities corresponding to a heavy hole impinging towards
an AlyaGag g AsfGaAs/Aly3Gags As quantum well. £ = 0 corresponds now to the top of the
Alg3Gag 7 As valence band; L =50 A, and k, =4 x 10=2(2m fa). Key: —, Ruw; - - -, Rrm;
----- o Tags - iy '

According to table 1, the critical energies corresponding to Alg3Gap7As are E, =~
16 meV, E[}' 2~ 19 meV, and E; = 69 meV, while the corresponding values for the well
material are at negative energies, and consequently are of no concern to us. Clearly at
ES {Aly 3Gap7As) both heavy- and light-hole channels open for transmission and reflection,
at El'," (Alp3Gag7As) the LH channel is not available any more in the semi-infinite-barrier
regions, until at E;(Alg3Gag7As) it is possible again to use this channel for reflection and
conduction. This essentially explains the abrupt change of the corresponding reflectivities
and transmissivities at these critical energies.

An interesting result is found in the Efl" (AlgaGapsAs) < E < Ei(AlosGagrAs) energy
range, where the only possibilities for reflection and transmission are the HH states, as for
a given E ~ 35 meV, Ryy equals exactly unity, and accordingly Tuy = 0. To understand
this at the first sight strange result, it should be realized that for any incident energy inside
this window, the LH is quasi-confined while the HH is free. Accordingly, the first presents a
quasi-discrete spectrum, degenerate with the continuum of the second. This is reminescent
of the problem studied by Fano a long time ago [28], where he finds that resonance/anti-
resonance pairs occur whenever a discrete state is coupled to a continuum. Very receatly,
the same problem was addressed by Boykin ez al [29], who finds that when a cavity (well)
weakly confines one pair of states and strongly confines the other (but with both belonging
to a continua), the transmission coefficient for the weakly confined state displays only anti-
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resonances, as observed in figure 7. Moreover, a related manifestation of this anti-resonance
is the build up of a large density of the strongly confined state in the cavity [28]. This is
precisely the behaviour we that found in our system, as can be seen from figure 8, where
the sums of the squared moduli of the HH and LH amplitude probabilities in the well are
plotted as a function of the incident energy.

1.4

20 0 40 50 60
E (meV)

Figure 8. Sums of the squares moduli of the LH {dashed line) and g (dotted line} probability
amplitudes in the well (|8]> + {62 and [e)? + |¥[?, respectively) for the situation of figure 7.
The full line corresponds o the diagonal reflectivity Run.

The equivalent results for 2 LH impinging from the left are given in figure 9. As
the condition to have propagating LH states in the semi-infinite-barrier region implies
E > E(Alg3Gag;As), all the interesting behaviour of the previous figure is missed.
In particular, note the absence of any oscillations in the diagonal transmissivity Ty,
which tends asymptotically towards unity for increasing values of the incident LH energy;
oscillations are observed, however, at higher incident energies (not shown).

Finally, we consider it instructive to analyse the transition from the finite-barrier case to
the simpler limiting case of L — co, where the potential along z reduces to a step function;
this case was studied in [12]. We display in figure 10 the diagonal reflectivity Ryy for a HH
impinging from the left, as a function of k., and for several barrier sizes; the energy of the
incident hole was E = 100 meV. For this value of the energy, the LH channel is no longer
available for reflection in the GaAs semi-infinite layer for k, > 4.38 x 10~%(2n/a) (from
equation (9) with E) = E), and consequently Ruy becomes unity for the L — co situation
(broken line) at this critical value. However, for any finite value of L, the transmissivity
Tyy is not exactly zerc for k, larger than this critical value, and accordingly Ryy is not
unity, as required by the current-conservation sum rule.
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5. Conclusions

This work has been devoted to the theoretical study of the quantum mechanical problem of
tunnelling and reflection of holes from barriers and wells in semiconductor heterostructures.
The calculation has been done within the framework of the envelope-function approach
which is based on the effective-mass approximation. By using the Luttinger Hamiftonian
to describe the dynamics of holes close at the top of the valence band, we have taken into
account exactly the band non-parabolicity, anisotropy, and heavy- and light-hole mixing
away from the Brillouin zone centre.

We have worked out the symmeiries of the hole scattering matrix which arise as a
consequence of time-reversal and spatial invariances; they translate into very general and
useful relations among refiectivities and transmissivities.

We also provide a complete set of numerical results concerning the reflection and
tunnelling of holes impinging on barriers and wells. A clear interpretation of the results
is given in terms of critical energies, where a channel available for conduction disappears
(or vice versa}, and the remaining coefficients change abruptly as a result of the current-
density-conservation constraint.

Contrary to what is found in the electron case, the building of above-the-barrier (or
above-the-well) resonant states, with unity transmission coefficient, does not seem to be a
general situation away from the zone centre. This is due to the fact that in the presence of HH
and LH mixing, the condition for the building of such resonance is much more restrictive
than in the case where k, = 0. In contrast, we have found strong anti-resonances for
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Figure 10. Diagonal reflectivity Ryy for a heavy hole impinging towards barriers of several
widths from the left. The energy of the incident particle is £ = 100 meV.

scattering from a well potential, for a situation where the impinging HH is free, while
the LH is quasi-confined in the well. This effect, related to a destructive interference
between the two coupled channels, is accompanied by a maximum of the LH density in the
well. Considered from a broader perspective, beyond the semiconductor condensed-matter
framework in which the calculations have been made, the present work is a contribution to
the general problem of scattering from a target where mixing among the different channels
occurs, restricted to the simplest case of just two possible incoming and outgoing channels.
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